Set-Membership identification of linear systems with input backlash

V. Cerone, D. Regruto

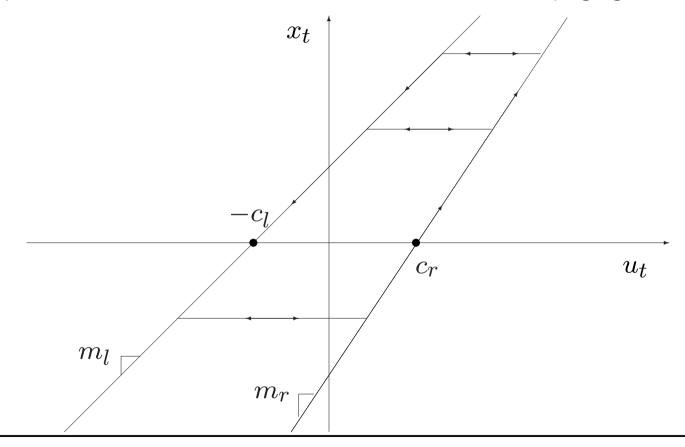
Dipartimento di Automatica e Informatica Politecnico di Torino (Italy)

e-mail: vito.cerone@polito.it, diego.regruto@polito.it

Scuola di Dottorato SIDRA "A. Ruberti" 2007 Identificazione di sistemi nonlineari Bertinoro, 9-11 Luglio 2007

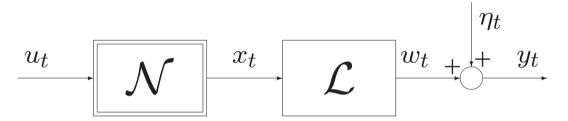
Backlash nonlinearity

- Backlash is a hard (i.e. non-differentiable) and dynamic (i.e. with memory) nonlinearity.
- Backlash is a typical characteristic of mechanical connections (e.g. gearboxes).



Linear systems with input backlash

- The structure resemble that of Hammerstein systems
- Backlash nonlinearity is considered instead of the usual memoryless nonlinearity



where:

 \mathcal{N} : backlash nonlinearity

 \mathcal{L} : linear subsystem

 x_t : inner signal not measurable

Identification of linear systems with input backlash

Motivations:

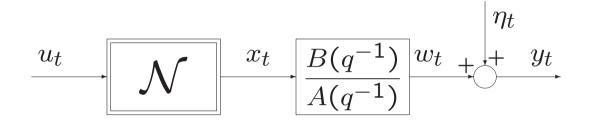
- Backlash severely limits the performance of control systems (may cause delays, oscillations, limit cycles, inaccuracy, ...)
- Adaptive and/or robust control techniques can cope with such limitations.
- Robust control techniques need bounds on the parameters of uncertain backlash
 (see, e.g., M. Corradini et al., "A VSC approach for the robust stabilization of nonlinear plants with uncertain non-smooth actuator nonlinearities A unified framework", IEEE TAC 2004)

Identification approach:

- Statistical framework:

 Statistical framework:
 - E.W. Bai ,"Identification of linear system with hard input nonlinearity", Automatica 2002
 - Set-membership framework: focus of this lesson

Problem formulation



$$x_{t} = \begin{cases} m_{l}(u_{t} + c_{l}) & \text{for } u_{t} \leq z_{l} \\ m_{r}(u_{t} - c_{r}) & \text{for } u_{t} \geq z_{r} \\ x_{t-1} & \text{for } z_{l} < u_{t} < z_{r} \end{cases}$$

$$A(q^{-1}) = 1 + a_{1}q^{-1} + \dots + a_{na}q^{-na}$$

$$B(q^{-1}) = b_{0} + b_{1}q^{-1} + \dots + b_{nb}q^{-nb}$$

$$B(q^{-1}) = b_{0} + b_{1}q^{-1} + \dots + b_{nb}q^{-nb}$$

$$a_{l} = \frac{x_{t-1}}{m_{l}} - c_{l}, \quad z_{r} = \frac{x_{t-1}}{m_{r}} + c_{r}$$

Problem formulation

- Aim: compute bounds on the parameters $\gamma^{\mathsf{T}} = [m_l \ c_l \ m_r \ c_r]$ and $\theta^{\mathsf{T}} = [a_1 \ ... \ a_{na} \ b_0 \ ... \ b_{nb}].$
- Prior assumption on the system:
 - 1. stability;
 - 2. na and nb are known;
 - 3. the steady-state gain is not zero;
 - 4. a rough upper bound on the settling time of the system is known;
- Prior assumption on the measurement uncertainty:
 - 1. $\{\eta_t\}$ is UBB: $\|\{\eta_t\}\|_{\infty} \leq \Delta \eta_t$;
 - 2. $\Delta \eta_t$ is known;

Proposed solution: preliminary

Three-stage solution:

- First stage: computation of bounds on the backlash parameters γ .
- Second stage: computation of bounds on the inner (unmeasurable) signal x_t .
- Third stage: computation of bounds on the linear block parameters θ .

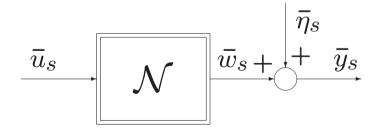
Proposed solution: preliminary

Remark 1: The parameterization is not unique

$$\Rightarrow \text{assume } g_{dc} = \frac{\sum_{j=0}^{nb} b_j}{1 + \sum_{i=1}^{na} a_i} = 1$$

Remark 2: Stimulate the system with a set of square wave inputs with different amplitudes

Steady-state operating conditions:



- 1) Bounds on the backlash parameters
 - Get $M \ge 2$ steady-state measurements:

$$\bar{y}_i = m_r(\bar{u}_i - c_r) + \bar{\eta}_i, \text{ for } \bar{u}_i \ge \frac{\bar{x}_{i-1}}{m_r} + c_r \quad i = 1, \dots, M$$

$$\bar{y}_j = m_l(\bar{u}_j + c_l) + \bar{\eta}_j, \text{ for } \bar{u}_j \le \frac{\bar{x}_{j-1}}{m_l} - c_l \quad j = 1, \dots, M$$

• The *feasible parameter set* of the backlash, is defined by the following equations:

$$\mathcal{D}_{\gamma} = \mathcal{D}_{\gamma}^r \bigcup \mathcal{D}_{\gamma}^l$$

$$\mathcal{D}_{\gamma}^{r} = \{ m_{r}, c_{r} \in R^{+} : \bar{y}_{i} = m_{r}(\bar{u}_{i} - c_{r}) + \bar{\eta}_{i}, | \bar{\eta}_{i} | \leq \Delta \bar{\eta}_{i}; \quad i = 1, \dots, M \}$$
 (1)

$$\mathcal{D}_{\gamma}^{l} = \{ m_{l}, c_{l} \in R^{+} : \bar{y}_{j} = m_{l}(\bar{u}_{j} + c_{l}) + \bar{\eta}_{j}, | \bar{\eta}_{j} | \leq \Delta \bar{\eta}_{j}; \quad j = 1, \dots, M \}$$
 (2)

Proposed solution: preliminary

Remarks:

• $\mathcal{D}_{\gamma} = \mathcal{D}_{\gamma}^r \cup \mathcal{D}_{\gamma}^l$ exactly described by the following nonlinear constraints

$$\bar{y}_i - m_r(\bar{u}_i - c_r) \ge -\Delta \bar{\eta}_i, \quad \bar{y}_i - m_r(\bar{u}_i - c_r) \le \Delta \bar{\eta}_i, m_r > 0, c_r > 0, i = 1, \dots, M$$

$$\bar{y}_j - m_l(\bar{u}_j + c_l) \ge -\Delta \bar{\eta}_j, \quad \bar{y}_j - m_l(\bar{u}_j + c_l) \le \Delta \bar{\eta}_j, m_l > 0, c_l > 0, j = 1, \dots, M$$

- \mathcal{D}^l_γ and \mathcal{D}^r_γ are disjoint sets (they can be handled separately).
- \mathcal{D}_{γ}^{l} and \mathcal{D}_{γ}^{r} have the same mathematical structure (enjoy the same properties).
- Results derived for \mathcal{D}^r_{γ} in the following slides, are also applicable to \mathcal{D}^l_{γ} .

<u>Definition 1</u> (Constraints boundaries defining \mathcal{D}_{γ}^{r})

the constraints defining the \mathcal{D}_{γ} corresponding to the s-th sets of data $(\overline{u}_s, \overline{y}_s)$ are:

$$h_r^+(\overline{u}_s) \doteq \{m_r \in R^+, c_r \in R^+ : \overline{y}_s + \Delta \eta_s = m_r(\overline{u}_s - c_r)\}$$

$$h_r^-(\overline{u}_s) \doteq \{m_r \in R^+, c_r \in R^+ : \overline{y}_s - \Delta \eta_s = m_r(\overline{u}_s - c_r)\}$$

<u>Definition 2</u> (Boundary of \mathcal{D}_{γ}^{r})

Boundary of
$$\mathcal{D}^r_{\gamma} \doteq \mathcal{H}(\mathcal{D}^r_{\gamma})$$

Definition 3 (Edges of \mathcal{D}_{γ}^{r})

$$\tilde{h}_r^+(\overline{u}_s) \doteq h_r^+(\overline{u}_s) \cap \mathcal{D}_{\gamma}^r = \{ m_r, c_r \in \mathcal{D}_{\gamma}^r : \overline{y}_s + \Delta \eta_s = m_r(\overline{u}_s - c_r) \}$$

$$\tilde{h}_r^-(\overline{u}_s) \doteq h_r^-(\overline{u}_s) \cap \mathcal{D}_{\gamma}^r = \{ m_r, c_r \in \mathcal{D}_{\gamma}^r : \overline{y}_s - \Delta \eta_s = m_r(\overline{u}_s - c_r) \}$$

Definition 4 (Constraints intersections)

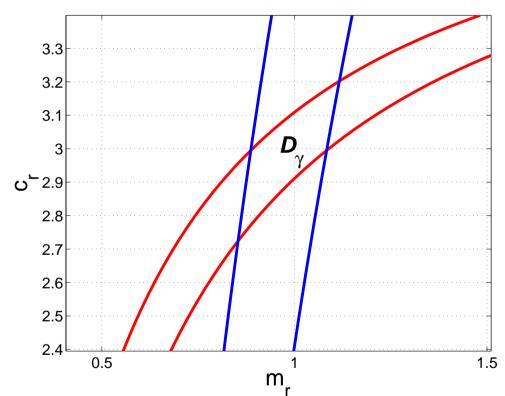
$$\mathcal{I}_{\gamma}^{r} = \{ (m_{r}, c_{r}) \in \mathbb{R}^{2} : \{ h_{r}^{+}(\overline{u}_{i}), h_{r}^{-}(\overline{u}_{i}) \} \cap \{ h_{r}^{+}(\overline{u}_{j}), h_{r}^{-}(\overline{u}_{j}) \} \neq \emptyset; i, j = 1, \dots, M; i \neq j \}$$

<u>Definition 5</u> (Vertices of \mathcal{D}_{γ}^{r})

$$\mathcal{V}(\mathcal{D}_{\gamma}^r) = \mathcal{I}_{\gamma}^r \cap \mathcal{D}_{\gamma}^r.$$

Remarks:

- ullet An exact description of \mathcal{D}_{γ}^{r} can be given in terms of edges and vertices.
- ullet A recursive algorithm for the computation of edges and vertices of \mathcal{D}^r_γ has been provided.



Tights bounds on $\gamma_1 = m_r$ and $\gamma_2 = c_r$ obtained computing the orthotope outer-bound:

$$\mathcal{B}_{\gamma}^{r} = \{ \gamma \in R^{2} : \gamma_{j} = \gamma_{j}^{c} + \delta \gamma_{j}, | \delta \gamma_{j} | \leq \Delta \gamma_{j}, j = 1, 2 \}$$

$$\gamma_{j}^{c} = \frac{\gamma_{j}^{min} + \gamma_{j}^{max}}{2}, \qquad \Delta \gamma_{j} = \frac{|\gamma_{j}^{max} - \gamma_{j}^{min}|}{2}$$

$$\gamma_{j}^{min} = \min_{\gamma \in \mathcal{D}_{\gamma}^{r}} \gamma_{j}, \quad \gamma_{j}^{max} = \max_{\gamma \in \mathcal{D}_{\gamma}^{r}} \gamma_{j}. \tag{3}$$

• \mathcal{B}_{γ} is obtained solving problems (3) which are 2 nonconvex optimization problems with 2 variables and 2M constraints.

Main Result 1:

The global optimal solutions of problems (3) occur on the vertices of \mathcal{D}_{γ}^{r} .

Proposed solution: second-stage

2) Bounds on the inner signal x_t

Result 1

The input of the backlash u_t is a PRBS with levels $\pm u^*$, $u^* > c_r$, $-u^* > c_l$

The output of the backlash x_t is a PRBS with levels $\bar{x}^* = m_r(u^* - c_r)$, $\underline{x}^* = m_l(u^* - c_l)$.

• Bounds on the inner signal level x^* are computed as:

$$\bar{x}^{\star min} = \min_{m_r, c_r \in \mathcal{D}_{\gamma}^r} m_r(u^{\star} - c_r), \quad \text{for } u^{\star} \ge c_r \tag{4}$$

$$\bar{x}^{\star max} = \max_{m_r, c_r \in \mathcal{D}_{\gamma}^r} m_r(u^{\star} - c_r), \quad \text{for } u^{\star} \ge c_r \tag{5}$$

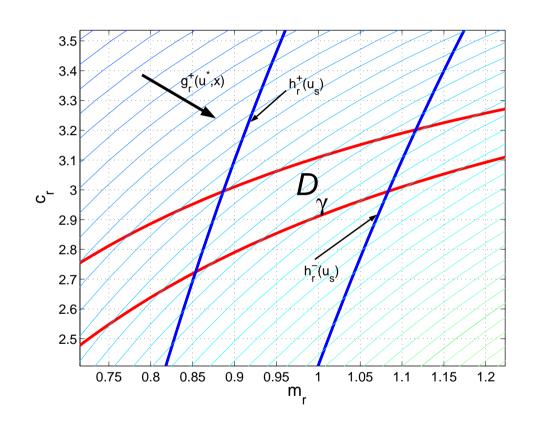
Proposed solution: second-stage

<u>Definition 6</u> (x-level curve of the objective function to be optimized)

$$g_r(u^*, x) \doteq \{m_r \in R^+, c_r \in R^+ : x = m_r(u^* - c_r)\}$$

Main Result 2

(Computation of the inner signal bounds) The global optimal solutions of problems (4) and (5) occur on the vertices of \mathcal{D}^r_{γ} .

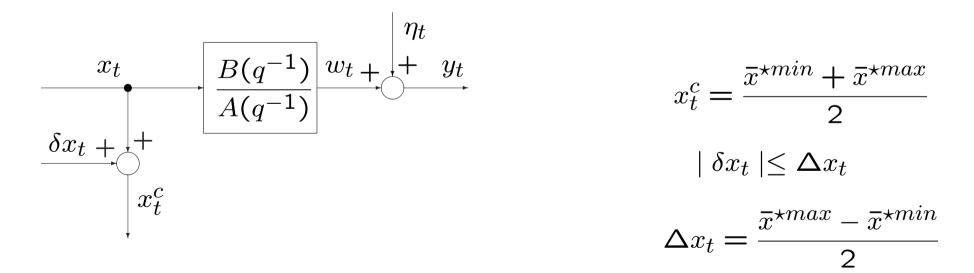


Proposed solution: third-stage

3) Bounds on the linear block parameters

The input PRBS sequence $\{u_t\}$ of levels $\pm u^*$ is applied and the (noisy) output sequence $\{y_t\}$ is measured.

Errors-in-variables (EIV) problem with UBB errors



Proposed solution: EIV problem

Exploiting previous results on static EIV problem with bounded errors

(V. Cerone, "Feasible parameter set of linear models with bounded errors in all variables", Automatica 1993)

a polytopic outer approximation \mathcal{D}'_{θ} of the *feasible parameter set* \mathcal{D}_{θ} is characterized by:

$$(\phi_t - \Delta \phi_t)^{\mathsf{T}} \theta \leq y_t + \Delta \eta_t, \quad (\phi_t + \Delta \phi_t)^{\mathsf{T}} \theta \geq y_t - \Delta \eta_t$$

$$\phi_t^{\mathsf{T}} = \begin{bmatrix} -y_{t-1} \dots - y_{t-na} x_t^c x_{t-1}^c \dots x_{t-nb}^c \end{bmatrix}$$

$$\Delta \phi_t^{\mathsf{T}} = [\Delta \eta_{t-1} \operatorname{sgn}(a_1) \dots \Delta \eta_{t-na} \operatorname{sgn}(a_{na})$$

$$\Delta x_t \operatorname{sgn}(b_0) \Delta x_{t-1} \operatorname{sgn}(b_1) \dots \Delta x_{t-nb} \operatorname{sgn}(b_{nb})]$$

$$[1 \dots 1 - 1 \dots - 1] \theta = -1$$

Proposed solution: EIV problem

Parameter uncertainty intervals $\Delta \theta_i$ are provided by the bounding orthotope \mathcal{B}_{θ} :

$$\begin{split} \mathcal{B}_{\theta} &= \{\theta \in R^p : \theta_j = \theta_j^c + \delta \theta_j, | \delta \theta_j | \leq \Delta \theta_j / 2, j = 1, \dots, p \}, \\ \theta_j^c &= \frac{\theta_j^{min} + \theta_j^{max}}{2}, \\ \Delta \theta_j &= | \theta_j^{max} - \theta_j^{min} |, \\ \theta_j^{min} &= \min_{\theta \in \mathcal{D}_{\theta}'} \theta_j, \quad \theta_j^{max} = \max_{\theta \in \mathcal{D}_{\theta}'} \theta_j. \end{split}$$

Computational aspects:

ullet $heta_j^{min}$ and $heta_j^{max}$ are computed by means of linear programming techniques.

Example:

Parameters of the simulated system:

$$m_l = 0.24, m_r = 0.26, c_l = 0.035, c_r = 0.070;$$

 $A(q^{-1}) = (1 - 0.5q^{-1} - 0.1q^{-2});$
 $B(q^{-1}) = (0.2q^{-1} + 1.2q^{-2})$

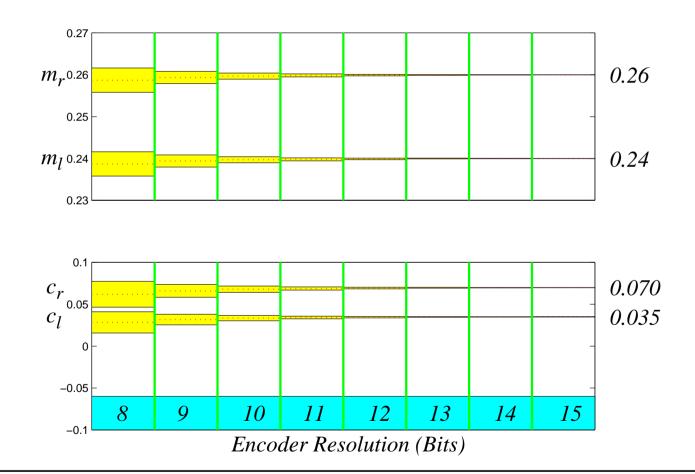
Measurement output errors:

Bounded absolute output errors have been considered:

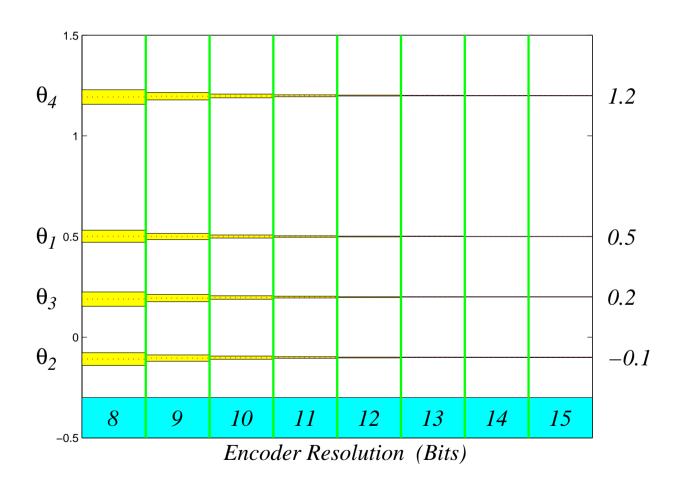
```
|\eta_t| \leq \Delta \eta_t; \{\eta_t\} belongs to the uniform distribution U[-\Delta \eta_t, +\Delta \eta_t]. |\bar{\eta}_s| \leq \Delta \bar{\eta}_s; \{\bar{\eta}_s\} belongs to the uniform distribution U[-\Delta \bar{\eta}_s, +\Delta \bar{\eta}_s]
```

Eight different values of $\Delta \eta = \Delta \eta_t = \Delta \bar{\eta}_s$ were chosen in such a way to simulate the errors of eight commercial absolute binary encoder with number of bits n_{bits} varying from 8 to 15.

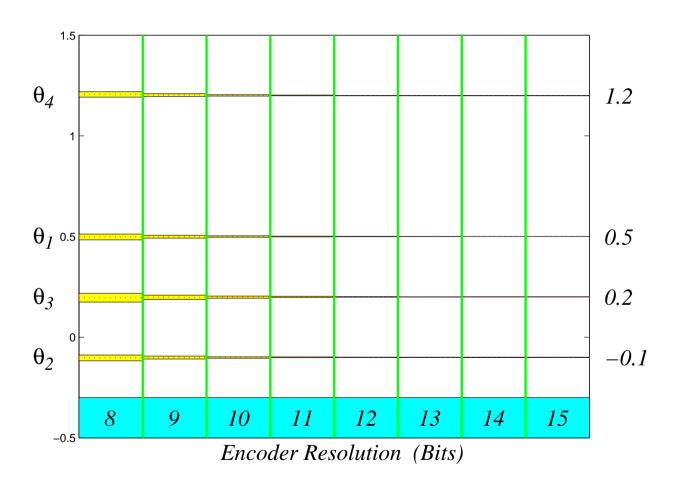
Backlash parameters: central estimates and parameters uncertainty bounds (M = 50)



Linear block parameters: central estimates and parameters uncertainty bounds (N = 100)



Linear block parameters: central estimates and parameters uncertainty bounds (N = 1000)



Conclusions

- The proposed three-stage parameter bounding procedure provides:
 - tight bounds on the parameters of the backlash using steady-state input-output data;
 - overbounds on the parameters of the linear part, through the computation of tight bounds on the unmeasurable inner signal x_t ;
- The numerical example has showed the effectiveness of the proposed procedure.
- The approach is computationally tractable: the computation related to the above example (M=2, N=[100,1000]) required few seconds on a standard notebook (AMD 3200)

Reference paper

References

Motivating papers

- M. Nordin, P. O. Gutman, "Controlling mechanical systems with backlash: A survey," Automatica, vol. 38, pp. 1633–1649, 2002.
- M. Corradini, G. Orlando, and G. Parlangeli, "A VSC approach for the robust stabilization of nonlinear plants with uncertain nonsmooth actuator nonlinearities: A unified framework," IEEE Trans. Autom. Control, vol. 49, no. 5, pp. 807–813, May 2004.
- G. Tao, C. Canudas deWit, Eds., "Special issue on adaptive systems with non-smooth nonlinearities," Int.
 J. Adapt. Control Signal Process., vol. 11, no. 1, 1997.

Identification

- E. Bai, "Identification of linear systems with hard input nonlinearities of known structure," Automatica, vol. 38, pp. 853–860, 2002.
- V. Cerone, D. Regruto, "Bounding the Parameters of Linear Systems With Input Backlash," IEEE Trans. Autom. Control, vol. 52, no. 3, pp. 531–536, March 2007.
- V. Cerone, "Feasible parameter set for linear models with bounded errors in all variable," Automatica, vol. 29, no. 6, pp. 1551–1555, 1993.